double-stranded DNA - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

double-stranded DNA - перевод на русский

MOLECULE THAT ENCODES THE GENETIC INSTRUCTIONS USED IN THE DEVELOPMENT AND FUNCTIONING OF ALL KNOWN LIVING ORGANISMS AND MANY VIRUSES
Dna; History of science and technology/Discovery of DNA; Desoxyribonucleic acid; Naked DNA; SsDNA; Deoxyribonucleic Acid; Deoxiribose nucleic acid; DsDNA; Deoxyribose nucleic acid; Dsdna; Deoxyribionucleic acid; Deoxyribose Nucleic Acid; DNA gene; Dehydroxyribonucleic acid; DNA strand; Deoxyribonucleic Acids; Deoxyribonucleic acids; Deoxyribonucleic; DNA molecule; Doexyribonucleic acid; Deoxiribonewcleic; The blueprint of life; D.n.a.; Deroxiribonueclec acid; Deoxyribonucleic acid; Ssdna; Protein-DNA complex; SDNA; Dioxyribonucleic Acid; Double-stranded DNA; Dublex DNA; Single-stranded DNA; Sense and Antisense; Sense and antisense; Structure of DNA; Accessory genome; DNA world; Phosphodiester backbone; DNA helices; D. N. A.; 🧬; Sodium thymonucleate; History of DNA research; Extracellular DNA; DNA study; DNA studies; ABC acids
  • 95px
  • 282px
  • 282px
  • date=22 September 2008 }}</ref>
  • 95px
  • 95px
  • 75px
  • DNA major and minor grooves. The latter is a binding site for the [[Hoechst stain]] dye 33258.
  • element]] and the detailed structures of two [[base pair]]s are shown in the bottom right.
  • animated version]]).
  • 3′]] hydroxyl group (—OH) on the other.
  • s2cid=13222080}}</ref>
  • lagging strand]]. This enzyme makes discontinuous segments (called [[Okazaki fragment]]s) before [[DNA ligase]] joins them together.
  • B]] and [[Z-DNA]]
  • language=en-US}}</ref>
  • Impure DNA extracted from an orange
  • Location of eukaryote [[nuclear DNA]] within the chromosomes
  • 250px
  • 250px
  •  A current model of meiotic recombination, initiated by a double-strand break or gap, followed by pairing with an homologous chromosome and strand invasion to initiate the recombinational repair process. Repair of the gap can lead to crossover (CO) or non-crossover (NCO) of the flanking regions. CO recombination is thought to occur by the Double Holliday Junction (DHJ) model, illustrated on the right, above. NCO recombinants are thought to occur primarily by the Synthesis Dependent Strand Annealing (SDSA) model, illustrated on the left, above. Most recombination events appear to be the SDSA type.
  • Karyotype}}
  • language=en-US}}</ref>
  • [[Maclyn McCarty]] (left) shakes hands with [[Francis Crick]] and [[James Watson]], co-originators of the double-helix model based on the X-ray diffraction data and insights of Rosalind Franklin and Raymond Gosling.
  • Interaction of DNA (in orange) with [[histone]]s (in blue). These proteins' basic amino acids bind to the acidic phosphate groups on DNA.
  • website=ndbserver.rutgers.edu}}</ref>
  • Pencil sketch of the DNA double helix by Francis Crick in 1953
  • Simplified diagram
  • language=en-US}}</ref>
  • The Eagle]] [[pub]] commemorating Crick and Watson
  • 97px
Найдено результатов: 2252
double-stranded DNA         

общая лексика

двунитевая [двухцепочечная] ДНК

DNA         

общая лексика

ДНК

дезоксирибонуклеиновая кислота

(Distributed Internet Application) распределённые приложения Интернет, архитектура DNA

(Digital Network Architecture) архитектура цифровой сети

сетевая архитектура, разработанная корпорацией Digital Equipment. Реализована в сети DECnet

синоним

deoxyribonucleic acid

Смотрите также

centromeric DNA; circular DNA; closed circular DNA; complementary DNA; cyclic DNA; denatured DNA; double-stranded DNA; end-labeled DNA; extrachromosomal DNA; foldback DNA; foreign DNA; genomic DNA; heteroduplex DNA; highly repetitive DNA; interspersed repeated DNA; junk DNA; linear DNA; linear duplex DNA; methylated DNA; mitochondrial DNA; naked DNA; native DNA; nick-translated DNA; noncoding DNA; nuclear DNA; nucleolar DNA; passenger DNA; plasmid DNA; recombinant DNA; renatured DNA; repetitive DNA; satellite DNA; selfish DNA; silent DNA; single-stranded DNA; spacer DNA; supercoiled DNA; template DNA; vector DNA; COM; DCOM; DAP

существительное

общая лексика

архитектура цифровых сетей

синоним

Digital Network Architecture

naked DNA         

общая лексика

депротеинизированная ДНК

deoxyribonucleic acid         

общая лексика

дезоксирибонуклеиновая кислота

ДНК

химия

кислота дезоксирибонуклеиновая

медицина

ДНК (дезоксирибонуклеиновая кислота)

single-stranded DNA         

общая лексика

однонитевая [одноцепочечная] ДНК

deoxyribonucleic         

медицина

дезоксирибонуклеиновый

double helix         
THE STRUCTURE FORMED BY DOUBLE-STRANDED MOLECULES OF NUCLEIC ACIDS SUCH AS DNA.
Double-Helix; Double helix; B-DNA; B form DNA; Watson-Crick structure; Watson Crick structure; Watson Crick Structure; Watson-Crick Structure; Double-helix; Double helices; Double helix structure; DNA double helix; Minor groove; Major groove; Double Helix; Watson-Crick helix; Double helical; Double-helical; Double-helices; DNA helix; Watson-Crick model; Watson-Crick hypothesis; B DNA; Helix geometries; Watson–Crick model; Double-helix structure

[dʌbl'hi:liks]

общая лексика

двойная спираль

биохимия

двойная спираль (молекулы ДНК)

геометрия

биспираль

excision repair         
  • DNA ligase, shown above repairing chromosomal damage, is an enzyme that joins broken nucleotides together by catalyzing the formation of an internucleotide [[ester]] bond between the phosphate backbone and the deoxyribose nucleotides.
  • A chart of common DNA damaging agents, examples of lesions they cause in DNA, and pathways used to repair these lesions. Also shown are many of the genes in these pathways, an indication of which genes are epigenetically regulated to have reduced (or increased) expression in various cancers. It also shows genes in the error-prone microhomology-mediated end joining pathway with increased expression in various cancers.
  • Most life span influencing genes affect the rate of DNA damage.
  • DNA repair rate is an important determinant of cell pathology.
  • The main double-strand break repair pathways
  • url=}}</ref>
  • Paul Modrich talks about himself and his work in DNA repair.
  • Structure of the base-excision repair enzyme [[uracil-DNA glycosylase]] excising a hydrolytically-produced uracil residue from DNA. The uracil residue is shown in yellow.
PROCESS OF RESTORING DNA AFTER DAMAGE
Dna repair; DNA Repair; DNA damage; DNA repair genes; Excision repair; Excision repair mechanism; Dna repair enzymes; Dna repair-deficiency disorders; Dna repair genes; Double-strand breaks; Double-strand break; Types of DNA lesions; Double strand breaks; Translesion synthesis; DNA damage checkpoint; Double strand break; Self-repair mechanisms; DNA repair gene; Single strand break; Single-strand break; DNA damage checkpoints; DNA lesions; DNA lesion; Translesion; Translation polymerase; DNA-damage response; DNA repair-deficiency disorders; Translesion DNA synthesis; Double-stranded break; Single-stranded break; DNA damage repair
эксцизионная репарация, восстановление путём удаления повреждённого участка (молекулы ДНК)
DNA repair         
  • DNA ligase, shown above repairing chromosomal damage, is an enzyme that joins broken nucleotides together by catalyzing the formation of an internucleotide [[ester]] bond between the phosphate backbone and the deoxyribose nucleotides.
  • A chart of common DNA damaging agents, examples of lesions they cause in DNA, and pathways used to repair these lesions. Also shown are many of the genes in these pathways, an indication of which genes are epigenetically regulated to have reduced (or increased) expression in various cancers. It also shows genes in the error-prone microhomology-mediated end joining pathway with increased expression in various cancers.
  • Most life span influencing genes affect the rate of DNA damage.
  • DNA repair rate is an important determinant of cell pathology.
  • The main double-strand break repair pathways
  • url=}}</ref>
  • Paul Modrich talks about himself and his work in DNA repair.
  • Structure of the base-excision repair enzyme [[uracil-DNA glycosylase]] excising a hydrolytically-produced uracil residue from DNA. The uracil residue is shown in yellow.
PROCESS OF RESTORING DNA AFTER DAMAGE
Dna repair; DNA Repair; DNA damage; DNA repair genes; Excision repair; Excision repair mechanism; Dna repair enzymes; Dna repair-deficiency disorders; Dna repair genes; Double-strand breaks; Double-strand break; Types of DNA lesions; Double strand breaks; Translesion synthesis; DNA damage checkpoint; Double strand break; Self-repair mechanisms; DNA repair gene; Single strand break; Single-strand break; DNA damage checkpoints; DNA lesions; DNA lesion; Translesion; Translation polymerase; DNA-damage response; DNA repair-deficiency disorders; Translesion DNA synthesis; Double-stranded break; Single-stranded break; DNA damage repair

общая лексика

репарация ДНК

excision repair         
  • DNA ligase, shown above repairing chromosomal damage, is an enzyme that joins broken nucleotides together by catalyzing the formation of an internucleotide [[ester]] bond between the phosphate backbone and the deoxyribose nucleotides.
  • A chart of common DNA damaging agents, examples of lesions they cause in DNA, and pathways used to repair these lesions. Also shown are many of the genes in these pathways, an indication of which genes are epigenetically regulated to have reduced (or increased) expression in various cancers. It also shows genes in the error-prone microhomology-mediated end joining pathway with increased expression in various cancers.
  • Most life span influencing genes affect the rate of DNA damage.
  • DNA repair rate is an important determinant of cell pathology.
  • The main double-strand break repair pathways
  • url=}}</ref>
  • Paul Modrich talks about himself and his work in DNA repair.
  • Structure of the base-excision repair enzyme [[uracil-DNA glycosylase]] excising a hydrolytically-produced uracil residue from DNA. The uracil residue is shown in yellow.
PROCESS OF RESTORING DNA AFTER DAMAGE
Dna repair; DNA Repair; DNA damage; DNA repair genes; Excision repair; Excision repair mechanism; Dna repair enzymes; Dna repair-deficiency disorders; Dna repair genes; Double-strand breaks; Double-strand break; Types of DNA lesions; Double strand breaks; Translesion synthesis; DNA damage checkpoint; Double strand break; Self-repair mechanisms; DNA repair gene; Single strand break; Single-strand break; DNA damage checkpoints; DNA lesions; DNA lesion; Translesion; Translation polymerase; DNA-damage response; DNA repair-deficiency disorders; Translesion DNA synthesis; Double-stranded break; Single-stranded break; DNA damage repair

общая лексика

восстановление [репарация] путём выщепления

эксцизионная репарация

Определение

DNA virus
¦ noun a virus in which the genetic information is stored in the form of DNA (as opposed to RNA).

Википедия

DNA

Deoxyribonucleic acid ( (listen); DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds (known as the phosphodiester linkage) between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA. The complementary nitrogenous bases are divided into two groups, pyrimidines and purines. In DNA, the pyrimidines are thymine and cytosine; the purines are adenine and guanine.

Both strands of double-stranded DNA store the same biological information. This information is replicated when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding, meaning that these sections do not serve as patterns for protein sequences. The two strands of DNA run in opposite directions to each other and are thus antiparallel. Attached to each sugar is one of four types of nucleobases (or bases). It is the sequence of these four nucleobases along the backbone that encodes genetic information. RNA strands are created using DNA strands as a template in a process called transcription, where DNA bases are exchanged for their corresponding bases except in the case of thymine (T), for which RNA substitutes uracil (U). Under the genetic code, these RNA strands specify the sequence of amino acids within proteins in a process called translation.

Within eukaryotic cells, DNA is organized into long structures called chromosomes. Before typical cell division, these chromosomes are duplicated in the process of DNA replication, providing a complete set of chromosomes for each daughter cell. Eukaryotic organisms (animals, plants, fungi and protists) store most of their DNA inside the cell nucleus as nuclear DNA, and some in the mitochondria as mitochondrial DNA or in chloroplasts as chloroplast DNA. In contrast, prokaryotes (bacteria and archaea) store their DNA only in the cytoplasm, in circular chromosomes. Within eukaryotic chromosomes, chromatin proteins, such as histones, compact and organize DNA. These compacting structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed.

Как переводится double-stranded DNA на Русский язык